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~ LETTER TO THE EDITOR

Hilbert space condition on conserved quantities in
second-order discrete time classical mechanics

G Jaroszkiewicz

Department of Mathematics, University of Nottingham, University Park, Nottingham NG7 2RD,
UK

Received 15 December 1994

Abstract. Kowalski’s method of mapping first-order discrete time systems to Hilbert space is
- discussed in the context of conserved quantities in second-order discrete time mechanics.

In this letter we show that a necessary and suffictent condition for any first-orderf quantity C
to be conserved in second-order discrete time mechanics is that the corresponding operator ¢
commutes with the appropriate generalization of Kowalski’s evolution operator M, originally
defined for first-order discrete time systems [1]. Without loss of generality, we shall limit
the discussion to a single real dynamical variable x, indexed by an mteger n, obeying the
second-order equation of motion

Xpa1 = flXn, Xne1) O<n<iN . ¢9)]

where the symbol = denotes an equality holding on a dynamical (i.e. actual) path. We
will suppose that equation (1) may be obtained by an apphcatmn of Cadzow’s variational
principle {2] to the action sum.

Ay =.Z F" (2)
n=1 ,
where the first-order system function F" := F(x,, x,—1) is the discrete time analogue of
a Lagrangian of the form L := L{x,x) in continnous time mechanics. This gives the
second-order equation of motion

———{F"-E—F"""}’EO OQ<r<N (3)
ax,
which we assume may be solved to give x,y) explicitly as in (1),

Our interest here is in first-order conserved quantities C* = C(x,, x,—(), which
by definition satisfy the condition C**! = C". We may construct such quantities by
applying Logan’s variant of Noether’s theorem [3] as follows. Choose some infinitesimal
transformation’ of the coordinates of the form 8x, = €u,, where € is infinitesimal and

n = #{Xy, Xp—1) and then

oF"  F™
SF' ¢ Up — Un-1} - Gy}
ax,, Bxx_l

t By definition, if x, is a variable indexed by a discrete parameter n then a pth-order function g has p + 1
AFUMENtS Xy, Xrils ..., £p4p fOr SOMeE integer r.
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Ifwecan show that 8 F" is of the form e(v,—v,-.1), where v, 1= v(x,, X,—1) 15 some function
other than —-"—u,,, then we can immediately deduce that the quantity C* := v, — 25 i, is
conserved rnodulo the equations of motion (1) or (3).

To use Kowalski’s Hilbert space description of classical discrete time systems, we first
rewrite our second-order equation of motion (1) as a pair of first-order equations. If we
define y, := %, then we may write

Znty = f(xn, Ya) Yol = g (Xns Yu) O0<l=<N (5)

where g(x,, yn) = Xp.

Kowalski’s method is to associate a creation and annihilation operator with each
dynamical degree of freedom. We associate the operators &, dt with the x, variable and
the operators b, b* with the y, variable. The important non-zero comreutators are

[&,a*] =[5, b"1=1. )
Following Kowalski, we define the Hilbert space states
Ix, y;n) r=expli(ta” + ¥u" — %12 = 11D }¥m 3} O<ngN @)

where |x,, ¥} is the normalized coherent state

[Zay yn) = exp{=3(5® + yu” + xa@* + yaBIN0). . ®
The appropriate generalization of Kowalski’s evolution operator is
“+)k (b-i-)l
ZZ( L£@.B) —at1e@, By - Y ©
k=0 {=

and then we may readily show that

lx, vin+ 1) 2 Mlx, y; n) 0<n<N. (10)

To see how the constants of motion are encoded into the Hilbert space description, we

note the basic property of the coherent states, i.e.

alx, yin) =xolx,yin)  blx, yin) = yalx, y; n). (11)
_ Given any classical first-order function C(x, y) we define its associated operator ¢ by
C := C{d, b). Then, assuming C is an analytic function of its arguments, we readily deduce

Clx, yinp = Cta, ya)l%, i mh = C"lx, y30). (12)
Hence we find

€, Mix, yiny = (C**' — CMx, yin + 1), (13)

If now we know C is conserved, i.e. C*t1 22 7, then we may use the overcompleteness
property of the states |x, y; n) to deduce

(C,M]1=0 (14)

which is the required necessary and sufficient condition satisfied by any operator function
of & and b representing a conserved first-order quantity in the original classical system.
This is analogous to the commutation of conserved operators with the temporal evolution
operator U (¢) in continuous time quantum mechanics. We note that this result holds despite
the fact that € is not Hermitian.

I am grateful to Dr K Kowalski for invaluable discussions on his work and to Professor
Y Rembieliiski for his hospitality at the University of L6dZ.
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