
Hilbert space condition on conserved quantities in second-order discrete time classical

mechanics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 L197

(http://iopscience.iop.org/0305-4470/28/6/003)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 01:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1.  Phys. A Math. Gen. 28 (1995) L19FL199. Printed in the UK 

LETTER TO THE EDITOR 

Hilbert space condition on conserved quantities in 
second-order discrete time classical mechanics 

G Jaroszkiewicz 
Department of Mathematics, Univenity of Nottingham University Park, Nottingham NG7 ZRD, 
UK 

Received 15 December 1994 

Abstract Kowalski's method of mapping first-order discrete time systems to Hilbert space is 
discussed in the context of conserved quantities in second-order discrete time mechanics. 

In this letter we show that a necessary and sufficient condition for any first-ordert quantity C 
to be conserved in second-order discrete time mechanics is that the corresponding operator I? 
commutes with the appropriate generalization of Kowalski's evolution operator M, originally 
defined for first-order discrete time systems [l]. Without loss of generality, we shall limit 
the discussion to a single real dynamical variable x, indexed by an integer n, obeying the 
second-order equation of motion 

X,+I E f ( ~ . ,  ~ ~ - 1 )  0 < i~ < N (1) 

where the symbol Z denotes an equality holding on a dynamical (i.e. actual) path. We 
will suppose that equation (1) may,be obtained by an application of Cadzow's variational 
principle [Z] to the action sum 

, 

where the first-order system function F" := F(x, ,x . - l )  is the discrete time analogue of 
a Lagrangian of the form L := L(x,.i) in continuous  time mechanics. This gives the 
second-order equation of motion 

(3) 
a 

- ( F E  + F"+') z 0 
ax, 

0 < n < N 

which we assume may be solved to give xn+l explicitly as in (1). 
Our interest here is in first-order conserved quantities C" := C(xn,x,,-l) ,  which 

by definition satisfy the condition Cn+' Z Ca. We may construct such quantities by 
applying Logan's variant of Noether's theorem [3] as follows. Choose some infinitesimal 
transformation' o r the  coordinates of the form Sx. = a,, where E is infinitesimal and 
U, := U(&, 'and then 

t By definition, if xn is a variable indexed by a discrete pameter n then a pth-order function g has p t I 
arguments x,. x,+L.. . . , x , + ~  for some integer r .  
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IfwecanshowthatSF"isoftheforme(u,-v.+), wherev,, := u(x,,x,_,)issomefunction 
other than gun, then we can immediately deduce that the quantity C" := U, - gun is 
conserved modulo the equations of motion (I) or (3). 

To use Kowalski's Hilbert space description of classical discrete time systems, we first 
rewrite our second-order equation of motion (1) as a pair of first-order equations. If we 
define yn := x.-, then we may write 

x n + ~  1 f(xn, yn) Y ~ + I  g ( X n 7  YZ) 0 1 N (5)  
where g(x,,, y.) := xn .  

Kowalski's method is to associate a creation and annihilation operator with each 
dynamical degree of freedom. We associate the operators 2, ir+ with the x, variable and 
the operators 6,5+ with the yn variable. The important non-zero commutators are 

(6) 

(7) 

[2, a+] = [6, 6'1 = 1. 

Ix, y; n) := expl$(xn2 + ynZ -XI '  - y~~)lIx,,, yn) 

Following Kowalski, we define the Hilbert space states 

0 n Q N 

where Ix, .  y,J is the normalized coherent state 

IX,, y.) := exp{-;(x,'+ ynZ +x.z+ + y,6+)~0). (8) 
The appropriate generalization of Kowalski's evolution operator is 

[f(2, 6) - i]k[g(;r. 6) - 61' k! I !  k=Q 1=0 

and then we may readily show that 

I x , y ; n +  I )  ~ k ~ x , y ; n )  o < n  < N .  (10) 
To see how the constants of motion are encoded into the Hilbert space description, we 

note the basic property of the coherent states, i.e. 

i i l x ,  y; n) = X,IX, y; n)  61x, y; n )  = ynlx, y; n) .  (11) 
Given any classical first-order function C(x,  y) we define its associated operator 2. by 

2. := C(2, 6). Then, assuming C is an~analytic function of its arguments, we readily deduce 

(12) ~ I X .  Y; n)  = ~ ( x , ,  Y A ~ ,  Y; n)  = C"IX. Y ;  n). 

12, k l t x ,  y ;  n) = (c"+' - C")IX, y; n + I ) .  (13) 

[E, k] = 0 (14) 

Hence we find 

If now we know C is conserved, i.e. C"+' 2 C", then we may use the overcompleteness 
property of the states Ix ,  y; n)  to deduce 

which is the required necessary and sufficient condition satisfied by any operator function 
of i and 6 representing a conserved first-order quantity in the original classical system. 
This is analogous to the commutation of conserved operators with the temporal evolution 
operator C ( t )  in continuous time quantum mechanics. We note that this result holds despite 
the fact that 2. is not Hermitian. 

I am grateful to Dr K Kowalski for invaluable discussions on his work and to Professor 
J Rembieliliski for his hospitality at the University of L6d2. 
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